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Abstract—We compare unstable parameter regions of a fluid
approximation model of TCP and the corresponding ns2 sim-
ulations. We identify the parameter region corresponding to
unstable equilibria of the fluid approximation model. Loss of
stability by the equilibrium typically leads to appearance of
periodic solutions. Simulations indicate that the aggregate TCP
stream also has two distinct regimes which can be described
as stochastic (stable) and oscillatory (unstable). The geometry
of the unstable regime parameter region disagrees substantially
with the unstable parameter region of the fluid approximation
model. The reason for the disagreement appears to be that the
oscillations in the fluid approximation model and in simulations
have fundamentally different origins. We argue that a serious
revision of the fluid approximation model is necessary if it is
to accurately capture non-equilibrium TCP dynamics, such as
periodic solutions.

I. I NTRODUCTION

Fluid approximation models of TCP have been studied
extensively over the last 20 years. There are clear practical
benefits to having good mathematical models of TCP. Even rel-
atively simple networks with large numbers of sources can take
a long time to simulate on reasonable time scales. Simulating
multiple sets of networks conditions, involving combinations
of varying buffer sizes, link bandwidths, and propagation
delays, to find the optimal network parameters is prohibitively
time consuming. Therefore, accurate computationally tractable
network models would be a great boon to network engineers
as well as computer scientists designing networking protocols.
Fluid approximation models of the TCP network protocol,
which is responsible for carrying the bulk of Internet traffic
today, are prototypical examples of this line of research. In
spite of the substantial literature on the equilibrium properties
and stability of these models, however, there still appearsto
be little understanding of how accurate they are, particularly
when it comes to stability, or even exactly what regime they
model.

In this paper we compare one of the commonly used fluid
approximation models againstns2simulation data with focus
on the question of equilibrium stability. This fluid approxi-
mation model of TCP was originally introduced by Kelly et
al. [2]. Since its introduction the model has been extensively
used to model multiple TCP sources in networks with arbitrary
topologies and heterogeneous delays (for example [8],[3],[5]).
It is well known that the model has a unique equilibrium,
which is easy enough to compute. Local and global stability of
the equilibrium have also been extensively studied. Feedback
propagation delay makes even linear stability analysis of the
equilibrium a non-trivial task and as a result the linear stability
condition for the equilibrium solution [8] has an implicit
form with respect to the two model parameters — bandwidth-

delay product and buffer size. This makes it difficult to
determine exactly which network parameters correspond to
stable equilibria.

In order to obtain a more explicit stability condition we
rewrite the stability inequality of [8] in a way that makes
it clear that it is the ratio of the equilibrium free buffer
space to band-width delay product that determines the linear
stability of the fluid model. Using the new form of the linear
stability condition we prove that the equilibrium is linearly
stable regardless of the bandwidth-delay product provided
that the buffer is sufficiently small (less than 18 packets
according to our computations). Conversely, the equilibrium
is linear stable regardless of the buffer size provided the
bandwidth-delay product is small (less than 3 packets). In
general, the equilibrium of the fluid approximation model
considered is linearly stable if the bandwidth-delay product
is large compared to the buffer size.

With these results in hand we move on tons2simulations.
In order to compare theoretical predictions with simulation
results it is important to understand which limiting regime
the fluid approximation model represents. The consensus in
the literature is that it models the mean aggregate rate in
the limit of infinitely many flows with identical (or nearly
identical) round-trip times [6]. Rigorous results in this direc-
tion, however, are scarce and make strong assumptions about
flow statistics [7], [6], [1]. Taking the correctness of thisview
on faith, for the moment, we compare the results ofns2
simulations with fluid approximation model predictions and
find substantial disagreement in the geometry of the stable
parameter region.

Simulations were run with 1000 flows transiting a single
router, with round trip times uniformly distributed within±5%
interval about the mean. Buffer size and propagation delay
were varied to determine the affect of these parameters on
throughput and packet loss. To summarize, the simulation data
indicate that buffer size more than bandwidth-delay product
determines the regularity and amplitude of oscillations in
transmission rate. Qualitatively the picture is somewhat similar
to the results on the fluid approximation model, in that there
appears to be a critical buffer size below which fluctuations
in transmission rate are largely random and uncorrelated and
above which the fluctuations are nearly perfectly periodic.This
critical buffer size depends albeit weakly on the bandwidth-
delay product and likely on the number of flows, though we
did not test the dependence on the later. Assuming that the
oscillations in transmission rate observed in simulationsare the
result of the limit cycle appearing in the fluid approximation
model there is a significant disagreement in the parameter
values where the two appear. The greatest surprise, however,



stemming from the simulation data was non-monotonicity of
packet loss with respect to buffer size. This in our view is the
clearest indication yet of the presence of multiple dynamic
regimes, already observed by [4], and of the limitations of the
considered fluid approximation model.

The above discrepancies raise the question of what is it
that the model is missing and whether there may be some
parameter domain where the model is valid.

The answer to the first question appears to be loss synchro-
nization. As observed in [4], the instability in TCP congestion
control manifests itself as synchronization between flows,
which in turn, causes periodic oscillations in transmission rate.
Loss synchronization means that a large proportion of flows
experiences nearly simultaneous packet loss in a single buffer
busy period. It is caused by the interaction between flows at the
router yet no fluid approximation model takes this inter-flow
interaction explicitly into account. The standard assumption
in all fluid approximation convergence results is that losses
for different flows occur independently and the arrival stream
at the buffer is a sum of Poisson processes. Which in turn
allows us to conjecture an answer the second question. The
conditions of loss independence and Poisson arrivals are very
nearly satisfied when buffer size is below the critical valueat
which synchronization induced oscillations set in.

The rest of the paper is structured as follows. In Section
II we lay out the TCP fluid model in the detail necessary for
the subsequent analysis. Section III contains theoreticalresults
derived from the fluid approximation model, followed by
simulation results in Section IV. In Section V we summarize
our findings and discuss directions for future research.

II. TCP FLUID APPROXIMATION MODEL

TCP uses a congestion window to control the maximum
number of unacknowledged packets in transit. Precise dynam-
ics of the congestion window size are notoriously hard to
capture. For this reason a fluid approximation mirroring the
main features of TCP congestion control — additive-increase
multiplicative-decrease (AIMD) — is commonly studied in-
stead. The fluid approximation aims to model the mean trans-
mission rate under the assumption that the number of packets
transmitted in a round-trip is large. The relationship between
transmission ratex and window sizeW is approximated
by x(t) = W (t)/T , where T is the round-trip link delay
andW (t) is the congestion window size. The basic equation
describing the mean transmission ratex(t) is then

ẋ(t) =
x(t − T )(1 − p(t − T ))

T 2x(t)
−

1

2
x(t−T )p(t−T )x(t), (1)

wherep(t) ∈ [0, 1] is the fraction of the packets lost which is
interpreted as an indicator of congestion [8].

In correspondence with TCP-Reno the first term in (1) gives
the additive increase of1/W per acknowledged packet, while
the second gives the multiplicative decrease by1/2 for every
unacknowledged packet. To complete the modelp(t) must be
given a specific form in terms ofx(t), which we postpone for
the moment. In equilibrium the two competing processes of

AIMD are balanced anḋx(t) = 0. Solving (1) with the left-
hand side set to zero andx(t) = x̂ we find that the equilibrium
transmission rate is given by

x̂ =
1

T

√

2(1 − p̂)

p̂
, (2)

wherep̂ = p(x̂) is the equilibrium packet loss probability.
To complete the model we takep(t) = p(x(t)) = (1 −

x/c)(x/c)B/(1− (x/c)B+1), which is the probability that an
M/M/1/B queue with capacityc is full. Since theoretical results
obtained below are to be compared against simulation data,
we remark at this point that the particular loss model does not
correspond to simulated environment in that the inter-arrival
and, certainly, service times in simulations are not necessarily
exponentially distributed. We leave the question of accuracy
of the loss model for future research. The equilibrium solution
now is determined by the equation

(1 + x̂2T 2/2)−1 = p(x̂).

We rewrite this in terms of the dimensionless quantities of
load, ρ = x/c, and bandwidth-delay product,L = cT ,

(1 + ρ̂2L2/2)−1 = p(ρ̂), (3)

where, abusing notation we now takep(ρ) = ρB/
∑B

k=1
ρk

as it will be through out the rest of the paper. It is likely that
closed algebraic form for̂ρ in terms of L and B does not
exist. Nevertheless, using standard methods of control theory
it is possible to show [8] that the equilibrium solution is stable
in linear approximation if

p̂′/p̂ < πL/2 (4)

where p̂′ = dp/dρ(ρ̂) and p̂ = p(ρ̂). (Our model corresponds
to the one considered in 5.1 of [8] withκ = 1/T 2 and β =
T 2/2.) The left-hand side of (4) is a complicated function
of L and B, which obscures the exact relationship between
bandwidth-delay productL, buffer sizeB and stability of the
equilibrium solution of (1).

III. T HEORETICAL RESULTS

We begin by plotting the stability inequality (4) in theL-
B plane. By a plot of the inequality we mean the plot of
the set where equality holds, and which is thus the boundary
of the inequality solution set. Solving forL from (3) gives
L = 1/ρ̂

√

2(1 − p̂)/p̂. Substituting this into (4) and moving
all the terms depending onρ to the left-hand side gives

ρ̂(p̂′/p̂)
√

p̂/(1 − p̂) < π/
√

2. (5)

Plotting (5) with inequality replaced by equality in theL-
B plane gives a plot as in Fig. 1. The figure suggests
the following observations about the linear stability of the
equilibrium solution.

1) The equilibrium solution is linearly stable for allL
providedB is sufficiently small.

2) For any fixedB the equilibrium solution is linearly
stable providedL is sufficiently large.



Fig. 1. Plot of (5) with inequality replaced by equality. Theinset shows a
blow up of the curve near the origin.

The scale of the figure hides another part of the stability region
— a strip of roughly constant width that runs along theB
axis. Part of this region is visible in the inset of Fig. 1. This
last observation is in agreement with the common knowledge
that equilibrium solution is stable for links with small enough
bandwidth-delay product [8].

Next we support each of the above observations with
analytic computations in the process deriving an interesting
modification of the stability inequality. We begin by rewriting
the linear stability condition (4) in a more useful and informa-
tive form. Derivative ofp with respect toρ can be rewritten
as

p′(ρ) =
p(ρ)

ρ

(

B −
∑B

k=0
kρk

∑B
k=0

ρk

)

=
p(ρ)

ρ
(B − Q)

whereQ is the expected queue length at the buffer when the
load isρ. Substituting this into (4) we get

B − Q̂ < (π/2)ρ̂L = (π/2)Ŵ (6)

whereŴ and Q̂ are the equilibrium congestion window size
and buffer queue size respectively.

Stability inequality (6) shows that linear stability of the
equilibrium solution is determined by the amount of the free
buffer space relative to the window size in equilibrium. The
reason for this appears to be that increasing buffer size drives
the equilibrium load closer to 1 and simultaneously increases
sensitivity of the system nearρ = 1 by increasingp′/p. Notice
thatp′/p has a singularity atρ = 1 in the limit of infinite buffer
size.

A. Stability for small buffer size

Estimates required to obtain a strong lower bound on the
buffer size at which instability may appear are too long for the
current exposition. Instead we restrict our attention to the case

B = 1 and show that in this case the equilibrium is linearly
stable regardless of the bandwidth-delay productL. If B = 1
then p(ρ) = ρ/(1 + ρ) and p′(ρ) = 1/(1 + ρ)2. Substituting
this into (3) givesρ̂ = 21/3/L2/3. Now stability inequality (4)
can be rewritten solely in terms ofL as

L1/3/(22/3 + (2L2)1/3) < π/2

The maximum of the left-hand side is attained atL =
√

2 and
so is 1/2

√
2 which is less thanπ/2. Hence the equilibrium

solution is linearly stable for any bandwidth-delay product L.
A much better estimate can be obtained by expanding the

left-hand side of the stability inequality (5) in a Taylor series
aboutρ = 1 but the error estimates are quite cumbersome. This
more precise estimate givesB∗ = 18 as the critical buffer size
at which instability may appear. The tip of the “nose” in the
inset of Fig. 4 corresponds toB∗.

B. Stability for large bandwidth-delay

Theorem 1. The equilibrium solution is stable in linear
approximation for any fixedB if L is sufficiently large.

Proof: First, observe that̂p → 0 as L → ∞. This can
be seen by considering solution̂ρ of the equilibrium equation
(3) as the intersection of the graphs of the right and left-hand
sides with respect toρ. The right-hand side is a monotonically
increasing function ofρ and approaches 0 asρ tends to 0.
The left-hand side is a monotonically decreasing function of
ρ which converges to zero point-wise asL tends to infinity.
Since the right-hand side does not depend onL it follows that
the intersection point of the two graphs converges to 0 asL
tends to infinity.

Next, we evaluate the right-hand side of (6) asL tends to
infinity. Multiplying both sides of equilibrium equation (2) by
T gives Ŵ =

√
2
√

(1 − p̂)/p̂. Since p̂ → 0 as L → ∞, Ŵ
diverges asL increases. The left-hand side, on the other hand,
is bounded above byB. Hence the equilibrium solution will
be linearly stable for all sufficiently largeL.

To test whether instability is really intermittent inL we
solved the delay differential equations (1) using NDelayD-
Solve Mathematica package. The stability criterion, afterall, is
only a sufficient stability condition and does not say anything
about existence of unstable equilibrium solutions. Fig. 2 shows
plots of numerical solutions to (1) forB = 25 and increasing
values ofL. The low and the high values ofL (plots (a) and
(c)) converge to steady state equilibria, while the plot forthe
intermediate value ofL (plot (b)) settles down to oscillations
about the equilibrium, indicating that the equilibrium solution
is not stable.

IV. SIMULATION RESULTS

Supposing that the fluid approximation models transmission
rate in the limit of infinite number of identical flows, we
compare the above theoretical results withns2simulation data.
Experimenting with different numbers of flows we converged
on 1000 as a number that is large enough for aggregate
behavior to emerge but at the same time small enough that



(a) 100 200 300 400 500 600
t

0.2

0.4

0.6

0.8

1.0

1.2

xHtL

(b) 100 200 300 400 500 600
t

0.2

0.4

0.6

0.8

1.0

xHtL

(c) 100 200 300 400 500 600
t

0.2

0.4

0.6

0.8

xHtL

Fig. 2. Numerical solutions of (1) withB = 25 initial condition ρ(t) =
ρ̂ + .1 on [−T, 0] and (a)L = 3 (b)L = 6, (c)L = 30. The equilibrium
solution is shown in blue.

a simulation can be run in reasonable time (on average a few
hours for 100s of simulated time).

The network topology used in simulations was is in Figure
IV. The propagation delays of the access links are randomly
uniformly distributed in the range between 0 and about 10%
of the propagation delay on the main linkn1 to n0. This
relatively small random component is added to the main
propagation delay on then1-n0 link to avoid periodicity that
develops when packet transmission times lock into a fixed
pattern. Additional randomization is introduced by starting
flows at random times uniformly distributed within the first
second of the simulation. The router capacity was set to 1Gb/s
so that a typical congestion window size was large enough to

Fig. 3. Network layout.

make the fluid approximation reasonable. This left precisely
two parameters — the propagation delay and buffer size of
the n1-n0 link, which correspond toT and B parameters of
the fluid model 1 respectively. Each simulation ran for 100s of
simulated time but the first 10s were then discarded to avoid
contamination of data with transient effects.

Figures 4 summarize the simulation data. The plots show
throughput, goodput and packet loss as functions of buffer
sizeB for values of the propagation delayT ranging between
100ms and 500ms in 100ms increments.

The packet loss plot immediately stands out because of the
counter-intuitive non-monotonic shape of the loss curves.Stan-
dard queuing theory intuition would suggest that the packet
loss should decrease exponentially with increasing buffer
size, and this is indeed what happens when buffer sizes are
relatively small. TCP congestion control mechanism, however,
adjusts the transmission rate based on packet loss feedback
which throws a wrench into the gears of the . For each fixed
propagation delay the decreasing packet loss trend reverses at
some critical buffer sizeBc(T ) and the packet loss increases
over a range of buffer sizes before resuming its downward
trend. What is the cause of this odd behavior? Looking more
closely at the data, by examining the time series of the mean
aggregate transmission rate (measured as the packet arrival
rate at the router) for buffer sizes less than and greater than
Bc(T ) (Figure 5) it is easy to see the likely proximate cause
of the reversal. The obvious difference between the two time
series is the presence of periodic oscillations for buffer sizes
greater thanBc(T ).

The reason for this dichotomy is that the system operates
in two fundamentally different regimes depending on whether
B < Bc or B > Bc.When B < Bc the buffer is not big
enough to accommodate the bursts arising on the short time
scale from ”piling up” of packets due to the differences in
the round-trip times and back to back packets resulting from
congestion window increases. This means that losses occur
before the aggregate source rate saturates the link, i.e. reaches
the capacity of the router. A large proportion of flows is, thus,
unlikely to suffer simultaneous losses because the buffer can
begin to clear immediately following the burst. The loss events
remain largely independent within and across flows on the long
time scale.
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Fig. 4. Aggregate throughput(a), goodput(b), and fractionof lost packets(c)
vs buffer sizeB and propagation delayT .

If B > Bc the buffer is big enough to absorb short
time scale bursts and the sources can saturate the link. This
increases the length of buffer busy periods because the buffer
usually will not be able to start clearing until all the packets
that have entered the link following the saturation point have
left the system by either being processed or dropped. This
number, of course, can not be greater than the bandwidth-
delay product plus buffer size and so the buffer busy period
cannot exceedT + B/c. The longer the busy period the more
flows are likely to lose packets during it. When a large number
of flows experience simultaneous losses a drastic drop in
the aggregate transmission rate occurs as the flows cut their
congestion windows in sync. Since the aggregate congestion
window cannot exceed the bandwidth-delay product by more
than B, which in our simulations is small compared with
the bandwidth-delay product, after the decrease the aggregate
congestion window will be significantly smaller than the
bandwidth delay product and the aggregate transmission rate
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Fig. 5. Aggregate throughput over time forT=200ms andB=250pkts (a)
andB=1000pkts (b). The horizontal line indicates the router capacity.
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Fig. 6. Relative error in the fluid approximation equilibriumthroughput.

significantly smaller than router capacity. With this the buffer
will finally begin to clear and then the cycle repeats.

Increasing the buffer size increases the duration of the above
cycle because larger buffers take longer time to fill. Since
each flow on average increases its congestion window by 1
packet per round trip time the buffer takes roughlyTB/N
seconds to fill, whereN is the number of flows (1000 in our
case). So the period between consecutive buffer overflows is
proportional to the buffer size. At the same time the duration of
the busy period remains relatively constant, at least ifB/c <<
1. Therefore, as the number of packets sent in a cycle grows
compared with the number of packets dropped in during the
busy period the fraction of lost packets starts to decline again
in agreement with graphs in Figure 4(c).

Comparing these results with fluid approximation model
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predictions we see that wherethe equilibrium throughput
is concerned the model 1 does relatively well when the
bandwidth-delay product is small and the buffer size is large
(Figure 6). This is somewhat surprising because the model
clearly does not account for synchronization effects and,
conversely, the lack of correlation between flows for small
buffers seems to be exactly what the assumptions of the model
require. We will discuss the likely reasons for this discrepancy
and propose some modifications to improve the fidelity of
the model briefly, but first we turn our attention to the main
objective of this paper — instability.

If we take theB < Bc regime to be stable andB > Bc

to be unstable, then the plot ofBc(T ) shows, that as regards
instability, the agreement between theory (Figure 1) and exper-
iment (Figure IV) is very far from perfect indeed. Although,
there is some general qualitative agreement between the two
graphs the degree of quantitative disagreement raises the
question whether this agreement is anything more than pure
coincidence. It becomes doubly unlikely when one considers
that the parameter region where the fluid approximation makes
the most accurate equilibrium predictions is actually the one
where it is least likely to be dynamically correct because it
does not take into account the effects of loss synchronization.
And this the key point: the oscillations in fluid approximation
model and the oscillations observed inns2simulations appear
to have different origins. The former caused by the interplay
of delay and buffer size the later by loss synchronization.

V. CONCLUSION

We deduced the parameter region corresponding to linearly
unstable equilibria of the fluid approximation model. Inter-
preting the fluid approximation as the infinite-flow limit we
compare theoretical predictions with simulation results for a
range of parameter values. Simulation results indicate that
TCP congestion control has two distinct operating regimes
whose choice is determined by the buffer size. Since one
of the regimes exhibits periodic oscillations while the other
does not, it is reasonable to consider them as unstable and
stable respectively. The critical buffer size separating the two
operating regimes varies with bandwidth-delay product butnot
in the way predicted by the fluid approximation model, which

makes predictions of instability derived by linear analysis from
fluid approximation model questionable. The main cause of os-
cillations in the aggregate TCP transmission rate in simulations
is loss synchronization between flows which is not modeled
by the fluid approximation model we consider or any other
fluid approximation model, as far as we know. This suggests
that if the fluid approximation is to be used for more than
computing the equilibrium throughput this collective behavior
must be included in the model.
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